The Synthesis of the Simplest Meliacins (Limonoids) from Tetranortirucallane Triterpenoids containing a β-Substituted Furyl Side-chain

By J. G. ST. C. BUCHANAN and T. G. HALSALL*

(The Dyson Perrins Laboratory, University of Oxford, Oxford, OX1 3QY)

RECENTLY¹ the preparation of the tetranortriterpenoid β -substituted furans (Ia), (Ib), and (Ic) was described. The possible role of these compounds in the biosynthesis of the tetranortriterpenes of the meliacin (limonoid) group such as gedunin (II)² and meldenin (III)³ found in the *Meliaceae* and *Rutaceae* families has already been discussed and it has been suggested⁴ that the carbon skeleton of the compounds of this group, which are all oxygenated at C-7, could arise by the formation of the 7 α ,8 α -epoxide of a compound such as (Ia) followed by rearrangement to a 7 α -hydroxy- Δ ¹⁴-apoderivative. Such transformations have now been carried out in satisfactory yield [76% overall in the best case

starting from compound (Ic)] to give the simplest members of the meliacin group.

The 3β -acetate (Ia) with monoperphthalic acid in dry ether at -3° for 21 hr. yielded the $7\alpha,8\alpha$ -epoxide (IVa),† m.p. 199—201°, $[\alpha]_{\rm D} - 31^{\circ}$, which rearranged with boron trifluoride etherate to give the apo-compound (Va), m.p. 182—184°, $[\alpha]_{\rm D} + 26^{\circ}$, which is one of the simplest meliacins. Similarly the 3α -acetate (Ib) and the ketone-3 (Ic) gave the corresponding epoxides (IVb), m.p. $162 \cdot 5 - 164 \cdot 5^{\circ}$, $[\alpha]_{\rm D} - 76^{\circ}$ and (IVc), m.p. $161 - 163^{\circ}$, $[\alpha]_{\rm D} - 88^{\circ}$, which were rearranged to give the meliacins (Vb), m.p. $193 - 194^{\circ}$, $[\alpha]_{\rm D} - 76^{\circ}$, and (Vc), m.p. $175 - 177^{\circ}$, $[\alpha]_{\rm D} - 12^{\circ}$. The

[†] All compounds gave satisfactory elemental analyses and possessed the expected spectral properties.

CHEMICAL COMMUNICATIONS, 1969

keto-alcohol (Vc) was converted into the diketone (Vd), m.p. 158–159°, $[\alpha]_D - 92°$, and into its acetate (Ve), m.p. 152–154°, $[\alpha]_D - 16°$. Hydrolysis of the 3α -acetate (Vb) gave the 3a,7a-diol (Vf), m.p. 237.5–239, $[\alpha]_{\rm D}$ –49°, which can be regarded as the simplest of all the meliacins.

(Received, January 7th, 1969; Com. 016.)

J. G. St. C. Buchanan and T. G. Halsall, Chem. Comm., 1969, 48.
^a A. Akisanya, C. W. L. Bevan, T. G. Halsall, J. W. Powell, and D. A. H. Taylor, J. Chem. Soc., 1961, 3705; S. A. Sutherland, G. A. Sim, and J. M. Robertson, Proc. Chem. Soc., 1962, 222.
^a J. D. Connolly, K. L. Handa, and R. McCrindle, Tetrahedron Letters, 1968, 437.
⁴ G. P. Cotterrell, T. G. Halsall, and M. J. Wriglesworth, Chem. Comm., 1967, 1121.